Particle Filters with Random Resampling Times
نویسنده
چکیده
Particle filters are numerical methods for approximating the solution of the filtering problem which use systems of weighted particles that (typically) evolve according to the law of the signal process. These methods involve a corrective/resampling procedure which eliminates the particles that become redundant and multiplies the ones that contribute most to the resulting approximation. The correction is applied at instances in time called resampling/correction times. Practitioners normally use certain overall characteristics of the approximating system of particles (such as the effective sample size of the system) to determine when to correct the system. As a result, the resampling times are random. However, in the continuous time framework, all existing convergence results apply only to particle filters with deterministic correction times. In this paper, we analyse (continuous time) particle filters where resampling takes place at times that form a sequence of (predictable) stopping times. We prove that, under very general conditions imposed on the sequence of resampling times, the corresponding particle filters converge. The conditions are verified when the resampling times are chosen in accordance to effective sample size of the system of particles, the coefficient of variation of the particles’ weights and, respectively, the (soft) maximum of the particles’ weights. We also deduce central-limit theorem type results for the approximating particle system with random resampling times.
منابع مشابه
Towards Smooth Particle Filters for Likelihood Estimation with Multivariate Latent Variables
In parametrized continuous state-space models, one can obtain estimates of the likelihood of the data for fixed parameters via the Sequential Monte Carlo methodology. Unfortunately, even if the likelihood is continuous in the parameters, the estimates produced by practical particle filters are not, even when common random numbers are used for each filter. This is because the same resampling ste...
متن کاملInstitutionen för systemteknik Department of Electrical Engineering Resampling in particle filters
In this report a comparison is made between four frequently encountered resampling algorithms for particle filters. A theoretical framework is introduced to be able to understand and explain the differences between the resampling algorithms. This facilitates a comparison of the algorithms based on resampling quality and on computational complexity. Using extensive Monte Carlo simulations the th...
متن کاملResampling Algorithms for Particle Filters: A Computational Complexity Perspective
Newly developed resampling algorithms for particle filters suitable for real-time implementation are described and their analysis is presented. The new algorithms reduce the complexity of both hardware and DSP realization through addressing common issues such as decreasing the number of operations and memory access. Moreover, the algorithms allow for use of higher sampling frequencies by overla...
متن کاملDesign and Implementation of Flexible Resampling Mechanism for High-Speed Parallel Particle Filters
There are many applications in which particle filters outperform traditional signal processing algorithms. Some of these applications include tracking, joint detection and estimation in wireless communication, and computer vision. However, particle filters are not used in practice for these applications mainly because they cannot satisfy real-time requirements. This paper presents an efficient ...
متن کاملVisual Tracking Using Particle Filters with Gaussian Process Regression
Particle degeneracy is one of the main problems when particle filters are applied to visual tracking. The effective solution methods on the degeneracy phenomenon include good choice of proposal distribution and use of resampling. In this paper, we propose a novel visualtracking algorithm using particle filters with Gaussian process regression and resampling techniques, which effectively abate t...
متن کامل